Menu

Package that provides tools for brain Lithium MRI pre-processing.

Source code for limri.regtools

# -*- coding: utf-8 -*-
##########################################################################
# NSAp - Copyright (C) CEA, 2023
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################

"""
Registration tools.
"""

# Imports
import os
import subprocess
import numpy as np
import nibabel
import scipy.io as sio
from limri.color_utils import print_subtitle, print_result


[docs]def flirt(in_file, ref_file, out, omat=None, init=None, cost="corratio", usesqform=False, displayinit=False, anglerep="euler", bins=256, interp="trilinear", dof=12, applyxfm=False, applyisoxfm=None, nosearch=False, wmseg=None, verbose=0): """ Affine registration with FSL flirt. Parameters ---------- in_file: str input volume. ref_file: str reference volume. out: str output volume omat: str, default None matrix filename - output in 4x4 ascii format. init: str, default None input 4x4 affine matrix cost: str, default 'corratio' choose the most appropriate option: 'mutualinfo', 'corratio', 'normcorr', 'normmi', 'leastsq', 'labeldiff', 'bbr'. usesqform: bool, default False initialise using appropriate sform or qform. displayinit: bool, default False display initial matrix. anglerep: str, default 'euler' choose the most appropriate option: 'quaternion', 'euler'. bins: int, default 256 number of histogram bins interp: str, default 'trilinear' choose the most appropriate option: 'trilinear', 'nearestneighbour', 'sinc', 'spline'. dof: int, default 12 number of transform dofs. applyxfm: bool, default False ppplies transform (no optimisation) - requires -init. applyisoxfm: float, default None the integer defines the scale - as applyxfm but forces isotropic resampling. verbose: int, default 0 0 is least and default. nosearch: bool, default False if set perform no search to initialize the optimization. wmseg: str, default None white matter segmentation volume needed by BBR cost function. Returns ------- out: str output volume. omat: str output matrix filename - output in 4x4 ascii format. """ cmd = ["flirt", "-in", in_file, "-ref", ref_file, "-cost", cost, "-searchcost", cost, "-anglerep", anglerep, "-bins", str(bins), "-interp", interp, "-dof", str(dof), "-out", out, "-verbose", str(verbose)] if usesqform: cmd += ["-usesqform"] if displayinit: cmd += ["-displayinit"] if applyxfm: cmd += ["-applyxfm"] if nosearch: cmd += ["-nosearch"] if init is not None: cmd += ["-init", init] if applyisoxfm is not None: cmd += ["-applyisoxfm", str(applyisoxfm)] if cost == "bbr": cmd += ["-wmseg", wmseg] if not applyxfm: cmd += ["-omat", omat] subprocess.check_call(cmd) return out, omat
[docs]def applywarp(in_file, ref_file, out_file, warp_file, pre_affine_file=None, post_affine_file=None, interp="trilinear", verbose=0): """ Apply SPM deformation field. Parameters ---------- in_file: str filename of input image (to be warped). ref_file: str filename for reference image. out_file: str filename for output (warped) image. warp_file: str filename for warp/coefficient (volume). pre_affine_file: str, default None filename for pre-transform (affine matrix). post_affine_file: str, default None filename for post-transform (affine matrix). interp: str, default 'trilinear' interpolation method {nn,trilinear,sinc,spline} verbose: int, default 0 the verbosity level. """ cmd = ["applywarp", "-i", in_file, "-r", ref_file, "-o", out_file, "-w", warp_file, "--abs", "--interp={0}".format(interp), "--verbose={0}".format(verbose)] if pre_affine_file is not None: cmd.append("--premat={0}".format(pre_affine_file)) if post_affine_file is not None: cmd.append("--postmat={0}".format(post_affine_file)) subprocess.check_call(cmd)
[docs]def flirt2aff(mat_file, in_file, ref_file): """ Map from 'in_file' image voxels to 'ref_file' voxels given `mat_file` omat FSL affine transformation. Parameters ------------ mat_file: str filename of output '-omat' transformation file from FSL flirt. in_file: str filename of the image passed to flirt as the '-in' image. ref_file: str filename of the image passed to flirt as the '-ref' image. Returns ------- omat: array (4, 4) array containing the transform from voxel coordinates in image for 'in_file' to voxel coordinates in image for 'ref_file'. """ flirt_affine = np.loadtxt(mat_file) in_img = nibabel.load(in_file) ref_img = nibabel.load(ref_file) in_hdr = in_img.header ref_hdr = ref_img.header def _x_flipper(n): flipr = np.diag([-1, 1, 1, 1]) flipr[0, 3] = n - 1 return flipr inspace = np.diag(in_hdr.get_zooms()[:3] + (1, )) refspace = np.diag(ref_hdr.get_zooms()[:3] + (1, )) if np.linalg.det(in_img.affine) >= 0: inspace = np.dot(inspace, _x_flipper(in_hdr.get_data_shape()[0])) if np.linalg.det(ref_img.affine) >= 0: refspace = np.dot(refspace, _x_flipper(ref_hdr.get_data_shape()[0])) omat = np.dot(np.linalg.inv(refspace), np.dot(flirt_affine, inspace)) return omat
[docs]def normalize2field(): """ Transform a SPM normalization field to a FSL field. For the deformation fields generated in SPM, the values in each of the three components (ie (:,:,:,1,1), (:,:,:,1,2) and (:,:,:,1,3) ) encode the x,y,z coordinates of the corresponding location (in units of mm). SPM conventions: 1) The file encodes the mapping rather than displacement fields for a couple of reasons: a) Even in 2012, many people still seem to think that displacements can be combined by addition or subtraction, rather than by composing or inverting the mappings. (Attempting to compose deformations by adding the displacement fields would be analogous to saying 2*2=3 or 3*3=5). Using the mapping instead of the displacements would (I hope) make this abuse a bit less likely. b) It saves needing to encode an additional affine transform matrix for dealing with the identity transform to which the displacements are added. This makes life simpler. 2) It encodes coordinates in mm, rather than voxels. If the mapping was to voxels, it would not work so well for images that are in alignment via the matrices encoded by the sform or qform fields. Also, if the mapping is to voxels, the values would depend on whether the first voxel in the file is denoted as 1,1,1 (as in MATLAB, Fortran or SPM) or as 0,0,0 (as in C or FSL). The mm coordinates are unambiguous - providing the sform (or sform) fields of the image that the deformation points to is filled in. The bad news here is that you do need to use the sform (qform) information to convert from SPM to FSL conventions. In FSL we can use either absolute coordinates (as is used in SPM) or relative ones. However, our mm coordinate system is not the same, so you'll need to map between FSL's and SPM's if you want to get the warp correct. The problem you are experiencing will be about coordinate system conventions. Our mm coordinate system is just a scalar multiple of the voxel coordinates if the image has a negative sform (or qform) determinant. If the determinant of the sform (or qform) matrix is positive then is it the same except that the x-voxel-coordinate is flipped first (0 to N-1 becomes N-1 to 0). Note that this means that our origin is in the 0,0,0 voxel (the centre of the voxel) and that we do not use the qform or sform information (except for the sign of the determinant). If you can figure out what the SPM conventions are then you should be able to adjust for this, although it may not be easy. References ---------- https://github.com/nipy/nitransforms https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=fsl;ed6a4473.1208 """ raise NotImplementedError
[docs]def antsregister(template_file, li_file, lianat_file, hanat_file, outdir, mask_file=None): """ Compute the deformation field with Ants from a T1w image to a template. """ try: import ants except: raise ImportError("You will need to install AntsPy to execute this " "function.") print_subtitle("Load data...") li = ants.image_read(li_file) print_result(f"li spacing: {li.spacing}") print_result(f"li origin: {li.origin}") print_result(f"li direction: {li.direction}") filename = os.path.join(outdir, "li.png") li.plot_ortho( flat=True, xyz_lines=False, orient_labels=False, title="li", filename=filename) lianat = ants.image_read(lianat_file) print_result(f"lianat spacing: {lianat.spacing}") print_result(f"lianat origin: {lianat.origin}") print_result(f"lianat direction: {lianat.direction}") filename = os.path.join(outdir, "lianat.png") lianat.plot_ortho( flat=True, xyz_lines=False, orient_labels=False, title="lianat", filename=filename) hanat = ants.image_read(hanat_file) print_result(f"hanat spacing: {hanat.spacing}") print_result(f"hanat origin: {hanat.origin}") print_result(f"hanat direction: {hanat.direction}") filename = os.path.join(outdir, "hanat.png") hanat.plot_ortho( flat=True, xyz_lines=False, orient_labels=False, title="hanat", filename=filename) template = ants.image_read(template_file) print_result(f"template spacing: {template.spacing}") print_result(f"template origin: {template.origin}") print_result(f"template direction: {template.direction}") filename = os.path.join(outdir, "template.png") template.plot_ortho( flat=True, xyz_lines=False, orient_labels=False, title="template", filename=filename) print_subtitle("Normalize...") lianat = ants.iMath_normalize(lianat) hanat = ants.iMath_normalize(hanat) template = ants.iMath_normalize(template) print_subtitle("Rigid: lianat -> hanat...") lianat2h = ants.registration( fixed=hanat, moving=lianat, type_of_transform="Rigid", outprefix=os.path.join(outdir, "lianat2h")) print_result(f"rigid transforms: {lianat2h['fwdtransforms']}") lianat2hanat = ants.apply_transforms( fixed=hanat, moving=lianat, transformlist=lianat2h["fwdtransforms"], interpolator="bSpline") filename = os.path.join(outdir, "lianat2hanat.nii.gz") lianat2hanat.to_filename(filename) print_result(f"lianat2h T1: {filename}") filename = os.path.join(outdir, "lianat2hanat.png") lianat2hanat.plot_ortho( hanat, flat=True, xyz_lines=False, orient_labels=False, title="lianat2hanat", filename=filename, overlay_alpha=0.5) li2hanat = ants.apply_transforms( fixed=hanat, moving=li, transformlist=lianat2h["fwdtransforms"], interpolator="bSpline") filename = os.path.join(outdir, "li2hanat.nii.gz") li2hanat.to_filename(filename) print_result(f"li2h T1: {filename}") filename = os.path.join(outdir, "li2hanat.png") li2hanat.plot_ortho( hanat, flat=True, xyz_lines=False, orient_labels=False, title="li2hanat", filename=filename, overlay_alpha=0.5) print_subtitle("Rigid + Affine + deformation field: hanat -> template...") if mask_file is None: h2mni = ants.registration( fixed=template, moving=hanat, type_of_transform="SyNRA", outprefix=os.path.join(outdir, "h2mni")) else: h2mni = ants.registration( fixed=template, moving=hanat, type_of_transform="Affine", outprefix=os.path.join(outdir, "_h2mni")) mask = ants.image_read(mask_file) print_result(f"mask spacing: {mask.spacing}") print_result(f"mask origin: {mask.origin}") print_result(f"mask direction: {mask.direction}") h2mni = ants.registration( fixed=template, moving=hanat, type_of_transform="SyNOnly", mask=mask, initial_transform=h2mni["fwdtransforms"][0], outprefix=os.path.join(outdir, "h2mni")) print_result(f"deform transforms: {h2mni['fwdtransforms']}") jac = ants.create_jacobian_determinant_image( domain_image=hanat, tx=h2mni["fwdtransforms"][0]) jac -= 1 hanat2mni = ants.apply_transforms( fixed=template, moving=hanat, transformlist=h2mni["fwdtransforms"], interpolator="bSpline") h2mnijac = ants.apply_transforms( fixed=template, moving=jac, transformlist=h2mni["fwdtransforms"], interpolator="bSpline") lianat2mni = ants.apply_transforms( fixed=template, moving=lianat, interpolator="bSpline", transformlist=h2mni["fwdtransforms"] + lianat2h["fwdtransforms"]) filename = os.path.join(outdir, "hjac.nii.gz") jac.to_filename(filename) print_result(f"h jacobian: {filename}") filename = os.path.join(outdir, "h2mnijac.nii.gz") h2mnijac.to_filename(filename) print_result(f"h2mni jacobian: {filename}") filename = os.path.join(outdir, "lianat2mni.nii.gz") lianat2mni.to_filename(filename) print_result(f"li2mni T1: {filename}") filename = os.path.join(outdir, "hanat2mni.nii.gz") hanat2mni.to_filename(filename) print_result(f"h2mni T1: {filename}") filename = os.path.join(outdir, "lianat2mni.png") lianat2mni.plot_ortho( template, flat=True, xyz_lines=False, orient_labels=False, title="lianat2mni", filename=filename, overlay_alpha=0.5) filename = os.path.join(outdir, "hanat2mni.png") hanat2mni.plot_ortho( template, flat=True, xyz_lines=False, orient_labels=False, title="hanat2mni", filename=filename, overlay_alpha=0.5)
[docs]def apply_transforms(fixed_file, moving_file, transformlist, filename): """ Apply a transform list to map an image from one domain to another. Parameters ---------- fixed_file: str fixed image defining domain into which the moving image is transformed. moving_file: str moving image to be mapped to fixed space. transformlist: list of str list of transforms generated by ants.registration where each transform is a filename. filename: str the name of the transformed image. """ try: import ants except: raise ImportError("You will need to install AntsPy to execute this " "function.") fixed = ants.image_read(fixed_file) moving = ants.image_read(moving_file) li2mni = ants.apply_transforms( fixed=fixed, moving=moving, interpolator="bSpline", transformlist=transformlist) li2mni.to_filename(filename)
[docs]def apply_translation(image_file, translation, filename): """ Apply a translation to an image. Parameters ---------- image_file: str input image. translation: 3-uplet the translation in mm. filename: str the name of the transformed image. """ im = nibabel.load(image_file) affine = im.affine affine[:3, 3] += translation im = nibabel.Nifti1Image(im.get_fdata(), affine) nibabel.save(im, filename)
[docs]def save_translation(translation, filename): """ Save a translation in Ants format. Parameters ---------- translation: 3-uplet the translation in mm. filename: str the name of the transformed image. """ try: import ants except: raise ImportError("You will need to install AntsPy to execute this " "function.") ras2lps = np.array([-1, -1, 1]) tx = ants.create_ants_transform( transform_type="AffineTransform", translation=(ras2lps * translation)) ants.write_transform(tx, filename)
[docs]def ants2affine(mat_file): """ Map from 'in_file' image voxels to 'ref_file' voxels given `mat_file` omat Ants affine transformation. Parameters ------------ mat_file: str filename of affine transformation file from Ants. Returns ------- omat: array (4, 4) array containing the transform from voxel coordinates in image for 'in_file' to voxel coordinates in image for 'ref_file'. """ transfo_dict = sio.loadmat(mat_file) lps2ras = np.diag([-1, -1, 1]) key = list(transfo_dict.keys()).remove("fixed")[0] rot = transfo_dict[key][0:9].reshape((3, 3)) trans = transfo_dict[key][9:12] offset = transfo_dict["fixed"] r_trans = (np.dot(rot, offset) - offset - trans).T * [1, 1, -1] omat = np.eye(4) omat[0: 3, 3] = r_trans omat[:3, :3] = np.dot(np.dot(lps2ras, rot), lps2ras) return omat

Follow us

© 2024, Limri developers