Menu

Package that provides tools for brain Lithium MRI pre-processing.

Source code for limri.normtools

# -*- coding: utf-8 -*-
##########################################################################
# NSAp - Copyright (C) CEA, 2022
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################

"""
Normalization tools.
"""

# Imports
import os
import subprocess
import numpy as np
import nibabel
from .regtools import flirt2aff


[docs]def gzfile(input_image, output_image): """ Gzip a file if necessary. Parameters ---------- input_image: str the image to reorient. output_image: str the gzip image. Returns ------- gzip_image: str the gzip file. """ im = nibabel.load(input_image) nibabel.save(im, output_image) return output_image
[docs]def fslreorient2std(input_image, output_image, save_trf=True): """ Reorient an image to match the approximate orientation of the standard template image (MNI152). Parameters ---------- input_image: str the image to reorient. output_image: str the reoriented image. save_trf: bool, default True opttionally save the reorientation matrix. """ cmd1 = ["fslreorient2std", input_image, output_image] cmd2 = ["fslreorient2std", input_image] subprocess.check_call(cmd1) if save_trf: stdout = subprocess.check_output(cmd2) fsl_trf_file = output_image.split(".")[0] + ".fsl.trf" with open(fsl_trf_file, "wt") as open_file: open_file.write(stdout.decode("utf8")) trf_file = output_image.split(".")[0] + ".trf" np.savetxt(trf_file, flirt2aff(fsl_trf_file, output_image, input_image)) return output_image
[docs]def fast(input_file, out_fileroot, klass=3, im_type=1, segments=False, bias_field=True, bias_corrected_im=True, probabilities=False): """ FAST (FMRIB's Automated Segmentation Tool) segments a 3D image of the brain into different tissue types (Grey Matter, White Matter, CSF, etc.), whilst also correcting for spatial intensity variations (also known as bias field or RF inhomogeneities). Parameters ---------- input_file: str the image to be segmented. out_fileroot: str output basename. klass: int, default 3 number of tissue-type classes. im_type: int, default 1 type of image 1=T1, 2=T2, 3=PD. segments: bool, default False outputs a separate binary image for each tissue type. bias_field, default True output estimated bias field. bias_corrected_im: bool, default True output bias-corrected image. probabilities: bool, default False outputs individual probability maps. Returns ------- biascorrected_file: str the bias corrected input image. """ bool_params = { "-g": segments, "-b": bias_field, "-B": bias_corrected_im, "-p": probabilities } cmd = ["fast", "-o", out_fileroot, "-n", str(klass), "-t", str(im_type)] for name, value in bool_params.items(): if value: cmd.append(name) cmd.append(input_file) subprocess.check_call(cmd) image_ext = ".nii.gz" biascorrected_file = out_fileroot + "_restore" + image_ext if not os.path.isfile(biascorrected_file): biascorrected_file = None return biascorrected_file

Follow us

© 2024, Limri developers