Package that provides tools for brain Lithium MRI pre-processing.
Source code for limri.workflows.normalization
# -*- coding: utf-8 -*-
##########################################################################
# NSAp - Copyright (C) CEA, 2023
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################
"""
Intensity normalization.
"""
# Imports
import os
import nibabel
from limri.norm import hist_matching, minmax_matching, norm
from limri.color_utils import print_title, print_result
# Global parameters
NORM_MAP = {
"hist": hist_matching,
"minmax": minmax_matching,
"norm": norm
}
[docs]def li2mninorm(li2mni_file, mask_file, outdir, norm="hist", ref_value=None,
li2mniref_file=None):
""" Normalize intensities using histogram matching.
Parameters
----------
li2mni_file: str
path to the Li image.
mask_file: str
the brain mask image.
outdir: str
path to the destination folder.
norm: str, default 'hist'
the normalization method, can be: 'hist', 'minmax', 'norm'.
ref_value: int, default None
reference value of phantom intensity: needed for 'norm' normlaization.
li2mniref_file: str, default None
path to the reference Li image: needed for 'hist' and 'minmax'
normalization.
"""
print_title("Load data...")
li2mni = nibabel.load(li2mni_file)
li2mni_arr = li2mni.get_fdata()
if li2mniref_file is not None:
li2mniref = nibabel.load(li2mni_file)
li2mniref_arr = li2mniref.get_fdata()
mask = nibabel.load(mask_file)
mask_arr = mask.get_fdata()
if norm == "hist" or norm == "minmax" and li2mniref_file is None:
raise ValueError("We need the path to the reference Li image "
"specified throught the 'li2mniref_file' argument "
"for this type of normalization method.")
if norm == "norm" and ref_value is None:
raise ValueError("We need reference phantom intensity value image"
"specified through the 'ref_value' argument for this "
"type of normalization method.")
print_title("Normalization...")
norm_fn = NORM_MAP.get(norm)
if norm_fn is None:
raise ValueError("Normalization method not defined.")
if norm != "norm":
norm_arr = norm_fn(li2mni_arr, li2mniref_arr, mask_arr)
else:
norm_arr = norm_fn(li2mni_arr, ref_value)
norm = nibabel.Nifti1Image(norm_arr, li2mni.affine)
norm_file = os.path.join(outdir, "li2mninorm.nii.gz")
nibabel.save(norm, norm_file)
print_result(norm_file)
Follow us