Menu

Package that provides tools for brain Lithium MRI pre-processing.

Source code for limri.norm.hist

# -*- coding: utf-8 -*-
##########################################################################
# NSAp - Copyright (C) CEA, 2023
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################

"""
Histogram matching.
"""

# Imports
import numpy as np


[docs]def hist_matching(source, template, mask, plot=False): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image. Parameters ---------- source: np.ndarray the image to transform: the histogram is computed over the flattened array. template: np.ndarray the template image: same dimensions as the source image. mask: np.ndarray the mask image: same dimensions as the source image. plot: bool, default False plot the matched histograms. Returns ------- matched: np.ndarray the transformed source image. """ # Compute the source and template histograms mask_indices = np.where(mask == 1) h1, c1 = np.histogram(source[mask_indices], bins=65536) h1t, c1t = np.histogram(template[mask_indices], bins=65536) vec_size = len(h1) vec_size_f = float(vec_size) # Compute the normalized cumulated density functions cdf1 = h1.cumsum().astype(np.float64) / np.sum(h1) cdf2 = h1t.cumsum().astype(np.float64) / np.sum(h1t) # Compute the mapping M = np.zeros((vec_size, )) for idx in range(vec_size): ind = np.argmin(np.abs(cdf1[idx] - cdf2)) M[idx] = ind M /= vec_size_f B = np.asarray(range(vec_size)) / vec_size_f # Interpolate the data by fitting a piecewise linear interpolant data1x = (source - c1.min()) / c1.max() data1x[np.where(data1x < 0)] = 0 data1x[np.where(data1x > 1)] = 1 indices = np.where((data1x > 0) & (data1x <= 1)) xnew = data1x[indices] ynew = np.interp(xnew, B, M) # Plot if verbose if plot: import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot(B, M, 'k-') ax.plot(xnew[::10000], ynew[::10000], 'ro') plt.show() # Reshape the result matched = np.zeros(source.shape, dtype=source.dtype) matched[indices] = ynew * (c1t.max() - c1t.min()) + c1t.min() return matched
[docs]def _hist_matching(source, template, mask, plot=False): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image. Parameters ---------- source: np.ndarray the image to transform: the histogram is computed over the flattened array. template: np.ndarray the template image: same dimensions as the source image. mask: np.ndarray the mask image: same dimensions as the source image. plot: bool, default False plot the matched histograms. Returns ------- matched: np.ndarray the transformed source image. """ # Image information shape = source.shape dtype = source.dtype mask_indices = np.where(mask == 1) source = source[mask_indices] template = template[mask_indices] # Get the set of unique pixel values and their corresponding indices and # counts s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) # Take the cumsum of the counts and normalize by the number of pixels to # get the empirical cumulative distribution functions for the source and # template images (maps pixel value --> quantile) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles /= s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles /= t_quantiles[-1] # Interpolate linearly to find the pixel values in the template image # that correspond most closely to the quantiles in the source image interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) matched = np.zeros(shape, dtype=dtype) matched[mask_indices] = interp_t_values[bin_idx] return matched

Follow us

© 2024, Limri developers