Package that provides tools for brain Lithium MRI pre-processing.
Source code for limri.denoising
# -*- coding: utf-8 -*-
##########################################################################
# NSAp - Copyright (C) CEA, 2023
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################
"""
Denoising tools.
"""
# Import
from dipy.denoise.nlmeans import nlmeans
from dipy.denoise.noise_estimate import estimate_sigma
[docs]def nlm_denoising(arr, n_coils=0):
""" Non-local means for denoising 3D and 4D images, using blockwise
averaging approach.
Parameters
----------
arr: 3D or 4D ndarray
The array to be denoised
n_coils: int, default 0
Number of coils of the receiver array. Use N = 1 in case of a SENSE
reconstruction (Philips scanners) or the number of coils for a GRAPPA
reconstruction (Siemens and GE). Use 0 to disable the correction
factor, as for example if the noise is Gaussian distributed.
Returns
-------
denoised_arr: ndarray
the denoised ``arr`` which has the same shape as ``arr``.
References
----------
.. [Coupe08] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C.
Barillot, An Optimized Blockwise Non Local Means Denoising
Filter for 3D Magnetic Resonance Images, IEEE Transactions on
Medical Imaging, 27(4):425-441, 2008
.. [Coupe11] Pierrick Coupe, Jose Manjon, Montserrat Robles, Louis Collins.
Adaptive Multiresolution Non-Local Means Filter for 3D MR Image
Denoising IET Image Processing, Institution of Engineering and
Technology, 2011
"""
sigma = estimate_sigma(arr, N=n_coils)
denoised_arr = nlmeans(arr, sigma=sigma, patch_radius=1, block_radius=2,
rician=True)
return denoised_arr
Follow us